

STØTTET AF **mælke**afgiftsfonden

Comparison of model reliabilities from single-step and bivariate blending methods

Matti Taskinen¹ Esa A. Mäntysaari¹ Martin H. Lidauer¹ Timo Knürr¹ Jukka Pösö² Guosheng Su³ Gert P. Aamand⁴ Ismo Strandén¹

¹MTT Agrifood Research Finland, ²FABA, ³Aarhus University, ⁴Nordisk Avlsværdivurdering

2013 Interbull Meeting - Nantes, France

- Increasing interest on estimation of model reliability in genomic evaluations:
 - Differences exist: range from pedigree accuracy to accuracy of full progeny test
 - Reliability is needed as weights for international genomic evaluations
- **GBLUP**: the model based reliability is computed through inversion of MME
 - If G⁻¹ can be formed then also (MME)⁻¹ can be done (MME is size genotyped animals)
- In the future genomic evaluations are mostly based on single-step BLUP (ssGBLUP)
 - Exact model based reliability estimation requires to invert a matrix of size **all animals**
 - approximations have been suggested by Misztal et al. 2013
 - based on added genomic information into MME

- Increasing interest on estimation of model reliability in genomic evaluations:
 - Differences exist: range from pedigree accuracy to accuracy of full progeny test
 - Reliability is needed as weights for international genomic evaluations
- **GBLUP**: the model based reliability is computed through inversion of MME
 - If *G*⁻¹ can be formed then also (*MME*)⁻¹ can be done (MME is size **genotyped animals**)
- In the future genomic evaluations are mostly based on single-step BLUP (ssGBLUP)
 - Exact model based reliability estimation requires to invert a matrix of size all animals
 - approximations have been suggested by Misztal et al. 2013
 - based on added genomic information into MME

- Increasing interest on estimation of model reliability in genomic evaluations:
 - Differences exist: range from pedigree accuracy to accuracy of full progeny test
 - Reliability is needed as weights for international genomic evaluations
- **GBLUP**: the model based reliability is computed through inversion of MME
 - If G^{-1} can be formed then also $(MME)^{-1}$ can be done (MME is size genotyped animals)
- In the future genomic evaluations are mostly based on single-step BLUP (ssGBLUP)
 - Exact model based reliability estimation requires to invert a matrix of size **all animals**
 - · approximations have been suggested by Misztal et al. 2013
 - based on added genomic information into MME

Estimation of reliability for single-step model

- Nordic genomic evaluations: DGV¹ and pedigree are combined using bivariate blending
 - **Bivariate blending** (Mäntysaari and Strandén, 2010) treats DGV as a correlated trait w. 100% accuracy, with a correlation of
 - $\sqrt{R_{DGV}^2}$ to "trait"
 - Original bivariate blending was revisited for this study (as will be presented)
- We wanted to **compare** model based **reliability** computed from the **full inverse of MME** using models:
 - animal model BLUP (AM-BLUP)
 - single-step BLUP (ssGBLUP)
 - bivariate blending using GBLUP (bbGBLUP)

¹Direct genomic value

Estimation of reliability for single-step model

- Nordic genomic evaluations: DGV¹ and pedigree are combined using bivariate blending
 - **Bivariate blending** (Mäntysaari and Strandén, 2010) treats DGV as a correlated trait w. 100% accuracy, with a correlation of $\sqrt{-2}$
 - $\sqrt{R_{DGV}^2}$ to "trait"
 - Original bivariate blending was revisited for this study (as will be presented)
- We wanted to **compare** model based **reliability** computed from the **full inverse of MME** using models:
 - animal model BLUP (AM-BLUP)
 - single-step BLUP (ssGBLUP)
 - bivariate blending using GBLUP (bbGBLUP)

¹Direct genomic value

Estimation of reliability for single-step model

- Nordic genomic evaluations: DGV¹ and pedigree are combined using bivariate blending
 - **Bivariate blending** (Mäntysaari and Strandén, 2010) treats DGV as a correlated trait w. 100% accuracy, with a correlation of $\sqrt{-2}$
 - $\sqrt{R_{DGV}^2}$ to "trait"
 - Original bivariate blending was revisited for this study (as will be presented)
- We wanted to **compare** model based **reliability** computed from the **full inverse of MME** using models:
 - animal model BLUP (AM-BLUP)
 - single-step BLUP (ssGBLUP)
 - bivariate blending using GBLUP (bbGBLUP)

¹Direct genomic value

Estimation of reliability for single-step model

- Nordic genomic evaluations: DGV¹ and pedigree are combined using bivariate blending
 - **Bivariate blending** (Mäntysaari and Strandén, 2010) treats DGV as a correlated trait w. 100% accuracy, with a correlation of $\sqrt{-2}$
 - $\sqrt{R_{DGV}^2}$ to "trait"
 - Original bivariate blending was revisited for this study (as will be presented)
- We wanted to **compare** model based **reliability** computed from the **full inverse of MME** using models:
 - animal model BLUP (AM-BLUP)
 - single-step BLUP (ssGBLUP)
 - bivariate blending using GBLUP (bbGBLUP)

¹Direct genomic value

Model reliability: $\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{Z}\mathbf{u} + \mathbf{e}$

Inverse of the coefficient matrix of the MME:

$$\mathbf{C}^{-1} = \begin{bmatrix} \mathbf{C}^{b,b} & \mathbf{C}^{b,u} \\ \mathbf{C}^{u,b} & \mathbf{C}^{u,u} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{R}^{-1}\mathbf{X} & \mathbf{X}'\mathbf{R}^{-1}\mathbf{Z} \\ \mathbf{Z}'\mathbf{R}^{-1}\mathbf{X} & \mathbf{Z}'\mathbf{R}^{-1}\mathbf{Z} + \mathbf{V}_{u}^{-1} \end{bmatrix}^{-1}$$
AM-BLUP: $\mathbf{V}_{u}^{-1} = \frac{1}{\sigma_{u}^{2}}\mathbf{A}^{-1}$
ssGBLUP: $\mathbf{V}_{u}^{-1} = \frac{1}{\sigma_{u}^{2}}\begin{bmatrix} \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - (\mathbf{A}_{22})^{-1} \end{bmatrix} \end{bmatrix}$
where

where

- A= pedigree based relationship matrix
- G= genomic relationship matrix
- A22= pedigree based relationships of genotyped animals

Reliability for animal i:

$$r_i^2 = 1 - \frac{\{\mathbf{C}^{u,u}\}_i}{\sigma_u^2}$$

where $\{\mathbf{C}^{u,u}\}_i$ is diagonal element corresponding animal *i*.

Model reliability: $\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{Z}\mathbf{u} + \mathbf{e}$

Inverse of the coefficient matrix of the MME:

$$\mathbf{C}^{-1} = \begin{bmatrix} \mathbf{C}^{b,b} & \mathbf{C}^{b,u} \\ \mathbf{C}^{u,b} & \mathbf{C}^{u,u} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{R}^{-1}\mathbf{X} & \mathbf{X}'\mathbf{R}^{-1}\mathbf{Z} \\ \mathbf{Z}'\mathbf{R}^{-1}\mathbf{X} & \mathbf{Z}'\mathbf{R}^{-1}\mathbf{Z} + \mathbf{V}_{u}^{-1} \end{bmatrix}^{-1}$$
AM-BLUP: $\mathbf{V}_{u}^{-1} = \frac{1}{\sigma_{u}^{2}}\mathbf{A}^{-1}$
ssGBLUP: $\mathbf{V}_{u}^{-1} = \frac{1}{\sigma_{u}^{2}}\begin{bmatrix} \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - (\mathbf{A}_{22})^{-1} \end{bmatrix} \end{bmatrix}$
where

wnere

- A= pedigree based relationship matrix
- G= genomic relationship matrix
- A₂₂ = pedigree based relationships of genotyped animals

Reliability for animal *i*:

$$r_i^2 = 1 - \frac{\{\mathbf{C}^{u,u}\}_i}{\sigma_u^2}$$

where $\{\mathbf{C}^{u,u}\}_i$ is diagonal element corresponding animal *i*.

- Step 1: get reliabilities from AM-BLUP: r²_{EBV}
- Step 2: reliability increase due to genotypes
 - EDC for all genotyped animals:
 - bull EDC based on non-genotyped daughters
 - cow EDC is $\frac{\sigma_{el}^2 r_{o}^2}{\sigma_{u}^2 (1 r_{o}^2)}$ where $r_{o}^2 =$ individual Interbull reliability
 - get reliabilities from GBLUP: r²_{DGV}
 use EDC from step 2. as weight in GBLU
 - calculate relative increase in evaluation accuracy due to GBLUP for genotyped animals:

$$\mathsf{EDC}_G = \frac{r_{DGV}^2}{1 - r_{DGV}^2} - \frac{r_{EBV}^2}{1 - r_{EBV}^2}$$

$$r_a = \sqrt{1 - \frac{1}{\text{EDC}_G + 1}}$$

- Step 1: get reliabilities from AM-BLUP: r²_{EBV}
- Step 2: reliability increase due to genotypes
 - EDC for all genotyped animals:
 - bull EDC based on non-genotyped daughters
 - cow EDC is $\frac{\sigma_o^2 r_o^2}{\sigma_u^2(1-r_o^2)}$ where $r_o^2 =$ individual Interbull reliability
 - get reliabilities from GBLUP: r_{DGV}^2
 - use EDC from step 2. as weight in GBLUP
 - calculate relative increase in evaluation accuracy due to GBLUP for genotyped animals:

$$\mathsf{EDC}_G = \frac{r_{DGV}^2}{1 - r_{DGV}^2} - \frac{r_{EBV}^2}{1 - r_{EBV}^2}$$

$$r_a = \sqrt{1 - \frac{1}{\text{EDC}_G + 1}}$$

- Step 1: get reliabilities from AM-BLUP: r²_{EBV}
- Step 2: reliability increase due to genotypes
 - EDC for all genotyped animals:
 - bull EDC based on non-genotyped daughters
 - + cow EDC is $\frac{\sigma_o^2 r_o^2}{\sigma_u^2(1-r_o^2)}$ where $r_o^2 =$ individual Interbull reliability
 - get reliabilities from GBLUP: r²_{DGV}
 - use EDC from step 2. as weight in GBLUP
 - calculate relative increase in evaluation accuracy due to GBLUP for genotyped animals:

$$\mathsf{EDC}_G = \frac{r_{DGV}^2}{1 - r_{DGV}^2} - \frac{r_{EBV}^2}{1 - r_{EBV}^2}$$

$$r_a = \sqrt{1 - \frac{1}{\text{EDC}_G + 1}}$$

- Step 1: get reliabilities from AM-BLUP: r²_{EBV}
- Step 2: reliability increase due to genotypes
 - EDC for all genotyped animals:
 - bull EDC based on non-genotyped daughters
 - + cow EDC is $\frac{\sigma_o^2 r_o^2}{\sigma_u^2(1-r_o^2)}$ where $r_o^2=$ individual Interbull reliability
 - get reliabilities from GBLUP: r_{DGV}^2
 - use EDC from step 2. as weight in GBLUP
 - calculate relative increase in evaluation accuracy due to GBLUP for genotyped animals:

$$EDC_{G} = \frac{r_{DGV}^{2}}{1 - r_{DGV}^{2}} - \frac{r_{EBV}^{2}}{1 - r_{EBV}^{2}}$$

$$r_a = \sqrt{1 - \frac{1}{\text{EDC}_G + 1}}$$

- Step 1: get reliabilities from AM-BLUP: r²_{EBV}
- Step 2: reliability increase due to genotypes
 - EDC for all genotyped animals:
 - bull EDC based on non-genotyped daughters
 - + cow EDC is $\frac{\sigma_o^2 r_o^2}{\sigma_u^2(1-r_o^2)}$ where $r_o^2=$ individual Interbull reliability
 - get reliabilities from GBLUP: r²_{DGV}
 - use EDC from step 2. as weight in GBLUP
 - calculate relative increase in evaluation accuracy due to GBLUP for genotyped animals:

$$\mathsf{EDC}_{G} = \frac{r_{DGV}^2}{1 - r_{DGV}^2} - \frac{r_{EBV}^2}{1 - r_{EBV}^2}$$

$$r_a = \sqrt{1 - \frac{1}{\text{EDC}_G + 1}}$$

- Step 1: get reliabilities from AM-BLUP: r²_{EBV}
- Step 2: reliability increase due to genotypes
 - EDC for all genotyped animals:
 - bull EDC based on non-genotyped daughters
 - + cow EDC is $\frac{\sigma_o^2 r_o^2}{\sigma_u^2(1-r_o^2)}$ where $r_o^2=$ individual Interbull reliability
 - get reliabilities from GBLUP: r²_{DGV}
 - use EDC from step 2. as weight in GBLUP
 - calculate relative increase in evaluation accuracy due to GBLUP for genotyped animals:

$$\mathsf{EDC}_{G} = \frac{r_{DGV}^{2}}{1 - r_{DGV}^{2}} - \frac{r_{EBV}^{2}}{1 - r_{EBV}^{2}}$$

$$r_a = \sqrt{1 - \frac{1}{\text{EDC}_G + 1}}$$

- Step 3:
 - bivariate blending model by random regression AM-BLUP:

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{K}_1\mathbf{u}_1 + \mathbf{K}_2\mathbf{u}_2 + \mathbf{e}$$

Solutions in \mathbf{u}_1 have GEBV.

- Values in design matrices K and weights depend on type of the observation. When observation is:
 - same DRP as in AM-BLUP

 $\begin{bmatrix} k_1 & k_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}$, weights same as in AM-BLUP

genomic estimate DGV from GBLUP:

 $\begin{bmatrix} k_1 & k_2 \end{bmatrix} = \begin{bmatrix} \sqrt{r_a^2} & \sqrt{1 - r_a^2} \end{bmatrix}$, weights very large (1000)

- Step 3:
 - bivariate blending model by random regression AM-BLUP:

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{K}_1\mathbf{u}_1 + \mathbf{K}_2\mathbf{u}_2 + \mathbf{e}$$

Solutions in \mathbf{u}_1 have GEBV.

- Values in design matrices ${\bf K}$ and weights depend on type of the observation. When observation is:
 - same DRP as in AM-BLUP

 $\begin{bmatrix} k_1 & k_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}$, weights same as in AM-BLUP

• genomic estimate DGV from GBLUP:

 $\begin{bmatrix} k_1 & k_2 \end{bmatrix} = \begin{bmatrix} \sqrt{r_a^2} & \sqrt{1-r_a^2} \end{bmatrix}$, weights very large (1000)

- Step 3:
 - bivariate blending model by random regression AM-BLUP:

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{K}_1\mathbf{u}_1 + \mathbf{K}_2\mathbf{u}_2 + \mathbf{e}$$

Solutions in \mathbf{u}_1 have GEBV.

- Values in design matrices K and weights depend on type of the observation. When observation is:
 - same DRP as in AM-BLUP

 $\begin{bmatrix} k_1 & k_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}$, weights same as in AM-BLUP

genomic estimate DGV from GBLUP:

 $\begin{bmatrix} k_1 & k_2 \end{bmatrix} = \begin{bmatrix} \sqrt{r_a^2} & \sqrt{1-r_a^2} \end{bmatrix}$, weights very large (1000)

- Step 3:
 - · bivariate blending model by random regression AM-BLUP:

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{K}_1\mathbf{u}_1 + \mathbf{K}_2\mathbf{u}_2 + \mathbf{e}$$

Solutions in \mathbf{u}_1 have GEBV.

- Values in design matrices K and weights depend on type of the observation. When observation is:
 - same DRP as in AM-BLUP

 $\begin{bmatrix} k_1 & k_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}$, weights same as in AM-BLUP

· genomic estimate DGV from GBLUP:

 $\begin{bmatrix} k_1 & k_2 \end{bmatrix} = \begin{bmatrix} \sqrt{r_a^2} & \sqrt{1-r_a^2} \end{bmatrix}$, weights very large (1000)

- Step 3:
 - bivariate blending model by random regression AM-BLUP:

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{K}_1\mathbf{u}_1 + \mathbf{K}_2\mathbf{u}_2 + \mathbf{e}$$

Solutions in \mathbf{u}_1 have GEBV.

- Values in design matrices K and weights depend on type of the observation. When observation is:
 - same DRP as in AM-BLUP

 $\begin{bmatrix} k_1 & k_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}$, weights same as in AM-BLUP

· genomic estimate DGV from GBLUP:

 $\begin{bmatrix} k_1 & k_2 \end{bmatrix} = \begin{bmatrix} \sqrt{r_a^2} & \sqrt{1-r_a^2} \end{bmatrix}$, weights very large (1000)

Study data was extracted from the production trait evaluation of Nordic Red dairy cattle

- For simplicity deregressed proofs (DRP) were assumed
- NOTE: actual phenotypic data (DRP) were not used ! Only the EDCs and pedigree
- We assumed $h^2 = 0.50$
- Genotype information: after edits, 38194 SNPs from BovineSNP50

- Study data was extracted from the production trait evaluation of Nordic Red dairy cattle
- · For simplicity deregressed proofs (DRP) were assumed
- NOTE: actual phenotypic data (DRP) were not used ! Only the EDCs and pedigree
- We assumed $h^2 = 0.50$
- **Genotype information**: after edits, 38194 SNPs from BovineSNP50

- Study data was extracted from the production trait evaluation of Nordic Red dairy cattle
- · For simplicity deregressed proofs (DRP) were assumed
- NOTE: actual phenotypic data (DRP) were not used ! Only the EDCs and pedigree
- We assumed $h^2 = 0.50$
- Genotype information: after edits, 38194 SNPs from BovineSNP50

- Study data was extracted from the production trait evaluation of Nordic Red dairy cattle
- · For simplicity deregressed proofs (DRP) were assumed
- NOTE: actual phenotypic data (DRP) were not used ! Only the EDCs and pedigree
- We assumed $h^2 = 0.50$
- Genotype information: after edits, 38194 SNPs from BovineSNP50

- · Genotyped animals:
 - Training animals: genotyped bulls born 2001-2005
 - · Candidates: genotyped animals born 2006-
- Number of training bulls (genotyped): 1055
- · Daughters (w. records) to the training bulls were searched
 - "Best" 522 bulls: 40 daughters
 - "Average" 533 bulls: 10 daughters
 - Total number of daughters for these bulls 26060
- Number of candidate animals (genotyped): 1830
 - 607 candidate bulls
 - 1223 candidate cows w. records
- Pedigree for all above animals were traced but limited to 2 generations \rightarrow **73579** animals in AM-BLUP
 - From which 67648 cows with records

- · Genotyped animals:
 - Training animals: genotyped bulls born 2001-2005
 - · Candidates: genotyped animals born 2006-
- Number of training bulls (genotyped): 1055
- Daughters (w. records) to the training bulls were searched
 - "Best" 522 bulls: 40 daughters
 - "Average" 533 bulls: 10 daughters
 - Total number of daughters for these bulls 26060
- Number of candidate animals (genotyped): 1830
 - 607 candidate bulls
 - 1223 candidate cows w. records
- Pedigree for all above animals were traced but limited to 2 generations \rightarrow **73579** animals in AM-BLUP
 - From which 67648 cows with records

- · Genotyped animals:
 - Training animals: genotyped bulls born 2001-2005
 - · Candidates: genotyped animals born 2006-
- Number of training bulls (genotyped): 1055
- · Daughters (w. records) to the training bulls were searched
 - "Best" 522 bulls: 40 daughters
 - "Average" 533 bulls: 10 daughters
 - Total number of daughters for these bulls 26060
- Number of candidate animals (genotyped): 1830
 - 607 candidate bulls
 - 1223 candidate cows w. records
- Pedigree for all above animals were traced but limited to 2 generations \rightarrow **73579** animals in AM-BLUP
 - From which 67648 cows with records

- · Genotyped animals:
 - Training animals: genotyped bulls born 2001-2005
 - · Candidates: genotyped animals born 2006-
- Number of training bulls (genotyped): 1055
- · Daughters (w. records) to the training bulls were searched
 - "Best" 522 bulls: 40 daughters
 - "Average" 533 bulls: 10 daughters
 - Total number of daughters for these bulls 26060
- Number of candidate animals (genotyped): 1830
 - 607 candidate bulls
 - 1223 candidate cows w. records
- Pedigree for all above animals were traced but limited to 2 generations \rightarrow **73579** animals in AM-BLUP
 - From which 67648 cows with records

- · Genotyped animals:
 - Training animals: genotyped bulls born 2001-2005
 - · Candidates: genotyped animals born 2006-
- Number of training bulls (genotyped): 1055
- · Daughters (w. records) to the training bulls were searched
 - "Best" 522 bulls: 40 daughters
 - "Average" 533 bulls: 10 daughters
 - Total number of daughters for these bulls 26060
- Number of candidate animals (genotyped): 1830
 - 607 candidate bulls
 - 1223 candidate cows w. records
- Pedigree for all above animals were traced but limited to 2 generations \rightarrow 73579 animals in AM-BLUP
 - From which 67648 cows with records

Summary of Setup

Three methods:

- Animal model
- Single-step
- Bivariate blending
- Five animal groups examined:
 - Genotyped:
 - Training bulls
 - Candidate bulls
 - Candidate cows
 - Non-genotyped: (not interested, skipped)
 - bulls
 - COWS
- Comparing reliabilities

Summary of Setup

Three methods:

- Animal model
- Single-step
- Bivariate blending

· Five animal groups examined:

- Genotyped:
 - Training bulls
 - Candidate bulls
 - Candidate cows
- · Non-genotyped: (not interested, skipped)
 - bulls
 - COWS

Comparing reliabilities

Summary of Setup

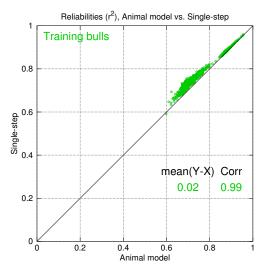
Three methods:

- Animal model
- Single-step
- Bivariate blending

· Five animal groups examined:

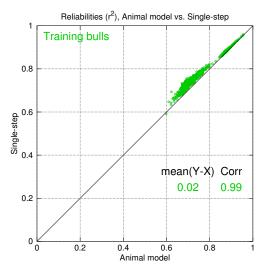
- Genotyped:
 - Training bulls
 - Candidate bulls
 - Candidate cows
- · Non-genotyped: (not interested, skipped)
 - bulls
 - COWS
- · Comparing reliabilities

Results: Animal model vs. Single-step



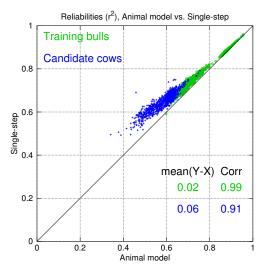
- X-axis: reliability of Animal model for each animal
- Y-axis: reliability of Single-step for each animal
- Dots on diagonal: no difference in reliabilities.
- Training bulls: about the same reliabilities.
- Candidate cows: Single-step reliabilities are higher.
- Candidate bulls:
 - Single-step reliabilities are clearly higher.
 - Cows have observations \Rightarrow reliabilities higher.

Results: Animal model vs. Single-step



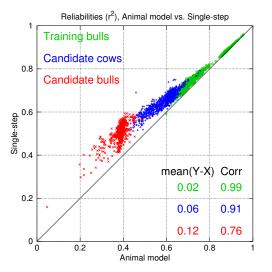
- X-axis: reliability of Animal model for each animal
- Y-axis: reliability of Single-step for each animal
- Dots on diagonal: no difference in reliabilities.
- Training bulls: about the same reliabilities.
- Candidate cows: Single-step reliabilities are higher.
- Candidate bulls:
 - Single-step reliabilities are clearly higher.
 - Cows have observations \Rightarrow reliabilities higher.

Results: Animal model vs. Single-step



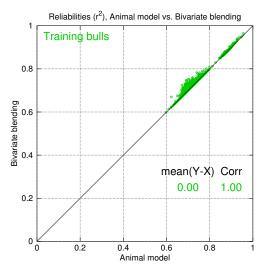
- X-axis: reliability of Animal model for each animal
- Y-axis: reliability of Single-step for each animal
- Dots on diagonal: no difference in reliabilities.
- Training bulls: about the same reliabilities.
- Candidate cows: Single-step reliabilities are higher.
- Candidate bulls:
 - Single-step reliabilities are clearly higher.
 - Cows have observations \Rightarrow reliabilities higher.

Results: Animal model vs. Single-step



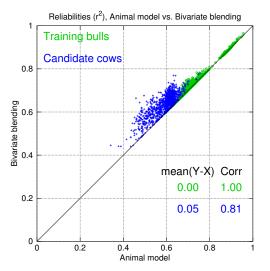
- X-axis: reliability of Animal model for each animal
- Y-axis: reliability of Single-step for each animal
- Dots on diagonal: no difference in reliabilities.
- Training bulls: about the same reliabilities.
- Candidate cows: Single-step reliabilities are higher.
- · Candidate bulls:
 - Single-step reliabilities are clearly higher.
 - Cows have observations \Rightarrow reliabilities higher.

Results: Animal model vs. Bivariate blending



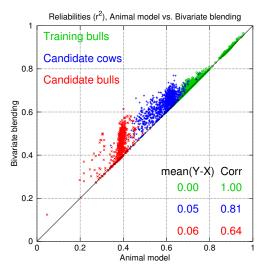
- Now: **Y-axis** has reliabilities of **Bivariate blending**
- Bivariate blending reliabilities are also higher than Animal model

Results: Animal model vs. Bivariate blending



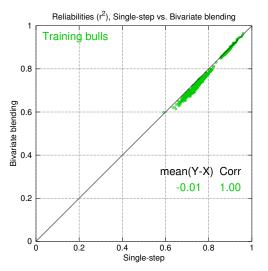
- Now: **Y-axis** has reliabilities of **Bivariate blending**
- Bivariate blending reliabilities are also higher than Animal model

Results: Animal model vs. Bivariate blending



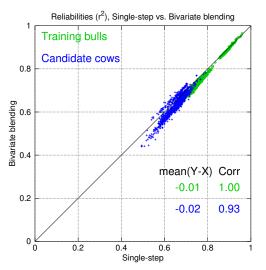
- Now: **Y-axis** has reliabilities of **Bivariate blending**
- Bivariate blending reliabilities are also higher than Animal model

Results: Single-step vs. Bivariate blending



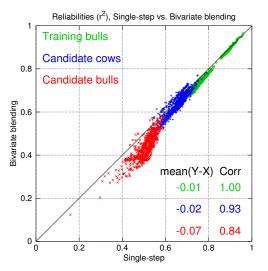
- Now: comparing Single-step (X-axis) and Bivariate blending (Y-axis)
- Bivariate blending reliabilities are **lower** than Single-step

Results: Single-step vs. Bivariate blending



- Now: comparing Single-step (X-axis) and Bivariate blending (Y-axis)
- Bivariate blending reliabilities are **lower** than Single-step

Results: Single-step vs. Bivariate blending



- Now: comparing Single-step (X-axis) and Bivariate blending (Y-axis)
- Bivariate blending reliabilities are **lower** than Single-step

- Bivariate blending was computationally lighter than Single-step in reliability calculation due to better sparsity — and can use standard software used for AM-BLUP
- Genomic reliabilities in single-step GBLUP **increased** due to genomic information
 - also in bivariate blending
- In general bivariate blending reliability estimates were lower than single-step
- Bivariate blending avoided double counting of relationship information ⇒ uses less information

- Bivariate blending was computationally lighter than Single-step in reliability calculation due to better sparsity — and can use standard software used for AM-BLUP
- Genomic reliabilities in single-step GBLUP increased due to genomic information
 - also in bivariate blending
- In general bivariate blending reliability estimates were **lower** than single-step
- Bivariate blending avoided double counting of relationship information ⇒ uses less information

- Bivariate blending was computationally lighter than Single-step in reliability calculation due to better sparsity — and can use standard software used for AM-BLUP
- Genomic reliabilities in single-step GBLUP increased due to genomic information
 - also in bivariate blending
- In general bivariate blending reliability estimates were **lower** than single-step
- Bivariate blending avoided double counting of relationship information ⇒ uses less information

- Bivariate blending was computationally lighter than Single-step in reliability calculation due to better sparsity — and can use standard software used for AM-BLUP
- Genomic reliabilities in single-step GBLUP increased due to genomic information
 - also in bivariate blending
- In general bivariate blending reliability estimates were lower than single-step
- Bivariate blending avoided double counting of relationship information ⇒ uses less information

- Bivariate blending was computationally lighter than Single-step in reliability calculation due to better sparsity — and can use standard software used for AM-BLUP
- Genomic reliabilities in single-step GBLUP increased due to genomic information
 - also in bivariate blending
- In general bivariate blending reliability estimates were lower than single-step
- Bivariate blending avoided double counting of relationship information ⇒ uses less information

Acknowledgements

- Nordic genomic selection project (VikingGenetics, Aarhus University, NAV, FABA, Svensk Mjölk (Växa Sverige)) provided the genotypes
- NAV and FABA provided the data

